Brauer groups in arithmetic geometry: exercises 7 on the everywhere locally soluble varieties

Timo Keller

December 10, 2018

For the following exercises, you may use a CAS.

Exercise 1 (Selmer cubic). Let $C = V_+(3X^3 + 4Y^3 + 5Z^3) \hookrightarrow \mathbb{P}^2_{\mathbb{Q}}$.

1. Show that C is a smooth projective geometrically integral curve of genus 1 over \mathbb{Q}.
2. Find the places of bad reduction of C/\mathbb{Q}.
3. Show that C has points everywhere locally.

Exercise 2 (Lind-Reichardt curve). Let $U = V(2y^2 + 17x^4 - 1) \hookrightarrow \mathbb{A}^2_{\mathbb{Q}}$.

1. Find homogeneous equations for a smooth projective geometrically integral model $C \hookrightarrow \mathbb{P}^3_{\mathbb{Q}}$ of U/\mathbb{Q} (Hint: Write it as an intersection of two quadrics).
2. Find the genus of C (Hint: [Hartshorne, Remark IV.6.4.1]).
3. Find the places of bad reduction of C/\mathbb{Q}.
4. Show that C has points everywhere locally.