Dr. Timo Keller

Lehrstuhl für Computeralgebra
Mathematisches Institut
Universität Bayreuth
95440 Bayreuth, Germany

Zimmer: NW II, 3.2.02.743
Telefon: +49-(0)921-55 3386
E-Mail: "Vorname"."Nachname" "at" uni-bayreuth.de
Lehrstuhl: Michael Stoll
Sprechstunde: nach Vereinbarung


Research interests: Arithmetic Geometry, especially Arithmetic of Abelian schemes, their L-functions and étale, crystalline and flat cohomology; rational points on varieties over number fields


Publications

  1. On the Tate-Shafarevich group of Abelian schemes over higher dimensional bases over finite fields, Manuscripta math. 150, 211–245 (2016)
  2. A duality theorem for Tate–Shafarevich groups of curves over algebraically closed fields Abh. Math. Semin. Univ. Hambg. (2018), 1–7 DOI: 10.1007/s12188-018-0196-7

Preprints

  1. On an analogue of the conjecture of Birch and Swinnerton-Dyer for Abelian schemes over higher dimensional bases over finite fields 48 pp.
  2. Finiteness properties for flat cohomology of varieties over finite fields 11 pp.
  3. Cohomology operations in Milnor K-theory mod ℓ, transfer of quadratic forms and Stiefel-Whitney invariants 19 pp.

Theses

PhD Thesis (Extended Edition): On the conjecture of Birch and Swinnerton-Dyer for Abelian schemes over higher dimensional bases over finite fields
PhD Thesis: The conjecture of Birch and Swinnerton-Dyer for Jacobians of constant curves over higher dimensional bases over finite fields


Lectures

Lecture on Brauer groups in arithmetic geometry WS 2018/19.
Topics covered:
  1. Crash course in Galois cohomology and Brauer groups of fields
  2. Crash course in étale cohomology and (cohomological) Brauer groups of schemes
  3. Brauer-Manin obstruction, theorems, examples, conjectures
Lecture notes (I will say and write more in the lecture):
Exercise sets:

Kleine AG:
Kleine Arbeitsgemeinschaft »Algebraische Geometrie und Zahlentheorie«

Bayerische Kleine AG:
Kleine Arbeitsgemeinschaft »Algebraische Geometrie und Zahlentheorie« in Bayern


Schülerzirkel Mathematik Regensburg:
Homepage des Schülerzirkels Mathematik Regensburg